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bstract

This review discusses data analysis strategies for the discovery of biomarkers in clinical proteomics. Proteomics studies produce large amounts of
ata, characterized by few samples of which many variables are measured. A wealth of classification methods exists for extracting information from
he data. Feature selection plays an important role in reducing the dimensionality of the data prior to classification and in discovering biomarker
eads. The question which classification strategy works best is yet unanswered. Validation is a crucial step for biomarker leads towards clinical use.
ere we only discuss statistical validation, recognizing that biological and clinical validation is of utmost importance. First, there is the need for
alidated model selection to develop a generalized classifier that predicts new samples correctly. A cross-validation loop that is wrapped around the
odel development procedure assesses the performance using unseen data. The significance of the model should be tested; we use permutations

f the data for comparison with uninformative data. This procedure also tests the correctness of the performance validation. Preferably, a new
et of samples is measured to test the classifier and rule out results specific for a machine, analyst, laboratory or the first set of samples. This
s not yet standard practice. We present a modular framework that combines feature selection, classification, biomarker discovery and statistical
alidation; these data analysis aspects are all discussed in this review. The feature selection, classification and biomarker discovery modules can
e incorporated or omitted to the preference of the researcher. The validation modules, however, should not be optional. In each module, the

esearcher can select from a wide range of methods, since there is not one unique way that leads to the correct model and proper validation. We
iscuss many possibilities for feature selection, classification and biomarker discovery. For validation we advice a combination of cross-validation
nd permutation testing, a validation strategy supported in the literature.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Modern developments in analytical techniques like mass
pectrometry (MS) created the opportunity to measure protein
oncentrations on a large scale; this area of research is called
roteomics. The hope is that proteomics studies can contribute
o healthcare. In clinical proteomics thousands of proteins or
eptides can be measured in a single experiment. This review
escribes how information is obtained from pre-processed clin-
cal proteomics data and how to validate the information using
tatistical procedures. The clinical proteomics experiments that
e discuss in this paper can be seen as a discovery tool for
iomarkers. A possible workflow for biomarker discovery is

iven in Fig. 1. It starts with a biological question, which leads to
carefully designed experiment, sampling and measurements.
reprocessing of the data is necessary to remove instrumental
oise and make the measurements of the samples comparable.

ig. 1. Biomarker discovery workflow. From biological question to biomarker
eads. The blocks data processing, biomarker pattern, and statistical validation
orm the subject of this review.
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preliminary answer to the biological question is obtained in
he three blocks that are encircled in Fig. 1: data processing,
iomarker pattern, and statistical validation. After the discov-
ry of statistically valid biomarker leads, external testing and
iological validation will show whether they truly answer the
iological question.

Biomarkers can be used to predict the state of a patient, in
iagnosis, to monitor the response to treatment, and to determine
he stage of a disease. For diagnosis, but not essentially different
or the other goals, samples from cases and controls are mea-
ured. The measurements are usually stored in a data matrix and
lass labels are stored in a response vector. Data analysis tools
ry to find the differences in measurements that predict the state
f a patient. This information is preferably in just a few proteins
biomarkers) that are indicative for the biological state. Alterna-
ively, the interplay of multivariate data can provide the desired
nformation. Results should be subjected to validation: statistical
s well as biological. The statistical validation should investi-
ate the performance of the biomarker, as well as the relevance
f the results. The biological validation is concerned with the
uestion whether the biomarkers are involved in processes that
an be related to the disease. If the result of both validation pro-
esses is satisfactory a putative biomarker is established. Many
ore steps have to be taken before this leads to an established

iomarker [1].
MS is not the only technique used for proteomics inves-

igations. Protein arrays and 2D gels also play an important
ole in the field [2]. However, when mining the literature on
ata analysis in clinical proteomics, most hits we encoun-
ered were on MS studies. Reviews on the application of

S in proteomics are available [3,4]; the current review does
ot discuss the many types of MS experiments. We restrict
urselves mainly to data analysis in single MS experiments

such as liquid chromatography–MS, matrix assisted laser des-
rption/ionisation MS and surface enhanced laser desorption/
onisation) although our conclusions also hold for other types of
omics) experiments.



matog

A
s
i
b
t
t

i
d
w
o

i
i
t
e
s
o
m
a
n
n
v
m
a
t
h
m
o

p
d
c
h
a

m
p
o
s

2

y
c
I
m
a
f
T
s
n
S
t
c

i
o
i
s
w

o
n
p
c
i
s
c
i

i
d
c
v
p
b

W
b
u
m
i
t
w
t
c
p
o

2

t
t
b
m
i
W
t

d
t
o
v
l
s
e
v

S. Smit et al. / J. Chro

In single MS experiments many different issues play a role.
mong these are experimental design, selection of patients,

ample handling, preprocessing of the spectra and biological val-
dation [5–12]. In this review we are not taking up these issues
ut focus on classification methods for proteomics studies and
he statistical validation tools that are used in combination with
he classification methods.

Classification methods applied in proteomics are developed
n different sciences, such as machine learning, chemometrics,
ata mining and statistics. A wide range of methods is available,
ith many different characteristics. We try to give an overview
f the methods that are popular in proteomics.

The reason that validation in classification methods is an
mportant and still open issue is mainly caused by the character-
stics of a proteomics data set. Usually, a mass spectrum contains
housands of different mass/charge (m/z) ratios. The sample size,
.g. the number of patients, is relatively small. This results in a
o-called high dimensionality small sample problem. This type
f problem suffers from the curse of dimensionality [13], which
eans that the number of samples needed to accurately describe
(discrimination) problem increases exponentially with the

umber of dimensions (variables). In proteomics studies, the
umber of samples is usually low compared to the number of
ariables, due to the limited availability or the cost of measure-
ents. This undersampling leads to the possibility of discovering
discriminating pattern between two populations, even when

hese two populations are statistically not distinct. Working with
igh dimensional data can easily lead to overfitting: the derived
odel is specific for the training data and does not perform well

n new samples.
Literature provides several approaches to overcome these

roblems. One approach is to reduce the dimensionality of the
ata. This can be done before a classification is performed or it
an be combined with a classifier. Other techniques to cope with
igh dimensional data are statistical validation strategies, such
s cross-validation and permutation tests.

This review starts with an overview of the most encountered
ethods for classification and biomarker discovery in clinical

roteomics. We present a framework in which most of the meth-
ds fall. And finally a strategy is put forward for a thorough
tatistical assessment of the entire data analysis procedure.

. Feature selection

Feature selection plays an important role in clinical data anal-
sis for three reasons. First, using all features in forming the
lassification rule in general does not give the best performance.
ncreasing the number of features from zero enhances perfor-
ance to some point, after which adding more feature leads to
deteriorating performance, because many features are unin-

ormative and they can conceal information in relevant features.
his is called the peaking phenomenon [14–16]. The second rea-
on is a technical one: some classification methods require the

umber of objects to be larger or equal to the number of features.
ince proteomics data sets usually consist of far more features

han samples, a selection has to be made before constructing the
lassification rule. Third, one of the goals of a proteomics study

(
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s to find leads for potential markers for disease. So the number
f variables in the final model should be small to enhance the
nterpretability of the model. To this end, finding a good clas-
ifier is combined with selection of variables that discriminate
ell.
We distinguish different categories of feature selection meth-

ds. Filter methods and variable transformation reduce the
umber of features independent of a classification method (unsu-
ervised), while wrappers select variables in concert with a
lassification method (supervised). Sometimes, feature selection
s intrinsic to a classification method, for example in clas-
ification trees. Another category is variable selection after
lassification, where the information in the classification rule
s used to find the most informative variables.

Filters, variable transformation and wrappers are discussed
n this section, and the section Biomarker candidate selection
escribes variable selection intrinsic to classification and after
lassification. This division reflects that wrappers, filters and
ariable transformation are mostly used to deal with the peaking
henomenon and to solve the technical issues, while leads for
iomarkers are often sought in the classification rule.

We realize that this is by no means a strict distinction.
rapper [17] and filter [18] methods have also been used for

iomarker selection, and vice versa: some intrinsic methods are
sed for pre-selection to provide input for other classification
ethods [19,20]. We would like to point out that statistical val-

dation is of crucial importance in variable selection, as it is
hroughout the entire data analysis. In undersampled data sets,
ith fewer samples than variables, it may very well be possible

o select a set of features that discriminate between cases and
ontrols, but that turn out to be uninformative when new sam-
les are classified. Thorough statistical validation can prevent
verfitting, and we discuss it in the section Statistical validation.

.1. Independent feature selection

Filter methods are applied to the pre-processed data before
he construction of the classifier. Examples are significance
ests such as the t-test, which compares differences in means
etween the case and the control groups. When the measure-
ents for a variable differ significantly between the two groups,

t is retained. The t-test assumes normality of the data. The
ilcoxon–Mann–Whitney test assesses differences between

wo groups without making this assumption.
These significance tests are designed to deal with univariate

ata, and a variable is considered to differ significantly when its
est statistic is smaller than some value for α (generally, α = 0.05
r α = 0.01). Since proteomics data involves testing many indi-
idual variables simultaneously, applying the same value for α

eads to many false positives [21]. The Bonferroni correction
ets an α-value for the entire set, so that the test statistic for
ach individual variable is compared to a value of α/(number of
ariables) and the false positive rate or family wise error rate

FWER) is controlled.

A less conservative correction for multiple testing is control-
ing the false discovery rate (FDR): the number of false positives
mong all positives [22,23]. Significance analysis of microarrays
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SAM) uses a t-test with a threshold to select features. The false
iscovery rate is obtained by comparing the results with results
n permutations [24].

Like filter methods, variable transformation is performed
efore classification. Projection methods reduce the dimension-
lity of the data in a multivariate approach. Principal component
nalysis (PCA) looks for linear combinations of the original vari-
bles that describe the largest amount of variation in the data
25]. The linear combinations (principal components) become
ew features that describe the data in a lower dimensional space.

.2. Wrappers

Wrappers are feature selection methods that work in con-
ert with a classification method. The classification method is
sed to test relevance of the variables. Variables that lead to
ood performance are selected. Forward selection starts with
n empty set and selects the variable that gives the best clas-
ification result. Given this first variable, another variable is
dded that realizes the largest improvement of performance [13].
ariables are added until the performance does not improve or
set criterion is met. Backward elimination works similarly,

tarting with the full set of features and sequentially removing
eatures from the set [13]. Genetic algorithms create many fea-
ure sets that are tested simultaneously for performance, given

classification method. The best sets are recombined to cre-
te a new generation of improved feature sets. The algorithm is
topped when the performance does not improve over several
enerations or when a preset performance measure is achieved
26].

. Classification methods

.1. Discriminant analysis

Discriminant analysis (DA) was first introduced by Fisher,
ho used it to discriminate between different Iris species [27]. In
he feature space, a direction is sought that maximizes the differ-
nces between the classes with respect to the covariance within
he control and case classes (Fig. 2). This direction, the discrim-
nant vector, can be used to classify new samples. DA uses the

Fig. 2. Linear discriminant vector.
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ovariance matrix to find the discriminant vector. Linear dis-
riminant analysis (LDA) assumes the within-class covariance
atrices to be equal, which leads to linear decision boundaries.
hen the covariance matrices are unequal, quadratic discrimi-

ant analysis (QDA) is applied. The decision boundary in QDA
s quadratic.

Usually, in proteomics data, undersampling causes the
ithin-class covariance matrix to be singular, which makes it

mpossible to find the discriminant vector. This can be solved
y filtering features [19] or by selecting features with a wrap-
er method as described in the previous section. Other solutions
ie in adjusting the DA algorithm to repair the singularity of
he covariance matrix. Regularized discriminant analysis (RDA)
28] shrinks the covariance matrix towards a multiple of the iden-
ity matrix [28]. In diagonal discriminant analysis the covariance

atrix is assumed to be diagonal, setting all off-diagonal ele-
ents to zero (see for example [29]).
A popular variant of DA in omics studies is principal compo-

ent discriminant analysis (PCDA) [30]. It solves the singularity
y reducing the dimensionality of the data with PCA, after which
A is performed on the PCA scores.

PCDA has been used for omics data analysis under a variety
f names. As uncorrelated discriminant analysis, Ye et al. used
t for the analysis of several publicly available gene expression
ata sets [31]. The maximum number of principal components
s used in the classifier. In a proteomics study of SELDI-TOF

S data concerning ovarian cancer and prostate cancer, Lilien
t al. used the Q5 algorithm, also a combination of PCA and
DA to discriminate healthy from diseased [32]. Again, the
aximum number of principal components is retained. The

lassification probability is calculated from the distance on the
iscriminant vector between the spectrum and the nearest class
ean. Spectra with classification probabilities smaller than a

hreshold are not classified. Smit et al. applied PCDA to SELDI
OF MS measurements of serums to discriminate Gaucher from
ealthy samples [33]. The number of components was tuned
ith cross-validation, which showed that the maximum number
f components does not always lead to the best model.

.2. Partial least squares

Partial least squares (PLS) [34] is similar to PCA, but in
xtracting the new features, PLS also takes the covariance of
he data with the response vector (vector of class labels) into
ccount. PLS tries to find the relations between the data matrix
nd the vector of class labels, i.e. a latent variable approach
o modelling the covariance structure of the data and the class
abels. A PLS model will try to find the multidimensional direc-
ion in the space of the data matrix that explains the maximum
ariance in the class label space. When it is used for classifica-
ion, it is referred to as partial least squares discriminant analysis
PLSDA) [35].

PLSDA is a much used method in metabolomics studies. It

as for example been applied in a human metabolomics study
nto obesity to differentiate between obese and lean individ-
als [36]. In a proteomics dementia data set, Gottfries et al.
mployed PLSDA for discrimination between different classes
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ig. 3. The optimal separating hyperplane separates the classes with the widest
argin.

f dementia and healthy individuals [37]. More examples of
LSDA applications in clinical metabolomics studies can be
ound in an overview by Trygg et al. [38].

.3. Support vector machines

The support vector classifier constructs a hyperplane that sep-
rates the cases from the controls. When the classes are linearly
eparable, the optimal hyperplane maximizes the distance from
he closest objects to the hyperplane, as is shown in Fig. 3. This
istance is called the margin. The class assignment of new sam-
les depends on which side of the hyperplane they are. In the
ase that the classes are not perfectly separable, some objects
ill be on the wrong side of the hyperplane (misclassification).
he amount to which objects are allowed to be on the wrong
ide of the hyperplane is bound by a penalty. A high value for
he penalty means it is very costly to cross the hyperplane. Con-
equently, in the original feature space the boundary will be
iggly to accommodate all samples; this may result in overfit.
mall values can lead to hyperplanes that are not very effective

n separating the classes [13,39].
In support vector machines (SVM), the data are transformed

o a larger feature space. This makes it possible to accommodate
iscrimination problems for which a linear decision boundary
s inappropriate. A nonlinear transformation of the data can be
hosen in such a way that the classes are (almost) separable
y a hyperplane in the higher dimensional feature space. The
inear separation in the high dimensional feature space translates
o a nonlinear decision boundary in the original feature space.
he new, higher dimensional feature space does not have to be
onsidered explicitly, the hyperplane can be computed using a
ernel function. There are many possibilities for transforming
he data, which makes SVM a versatile method [39]. The same
ata transformations could also be coupled to other classifiers,

uch as PCDA and PLSDA.

The SVM methodology is a popular method for classification
n clinical proteomics. Among recent applications are studies of
uberculosis [40], ovarian and prostate cancer [41], response to
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herapy in rectal cancer patients [42], heart failure [43], and
reast cancer [44].

.4. Logistic regression

The odds is defined as the probability of a sample being a
ember of one class to the probability that the sample is out-

ide that class. Logistic regression models use linear regression
o fit the data to the natural logarithm of the odds. It ensures
hat the probabilities are between zero and one and that they
um to one. Logistic regression is similar to LDA, but it makes
ewer assumptions about the underlying distributions. Like in
A, the large number of variables in proteomics data consti-

utes a problem, which can be tackled in several ways. Variable
election prior to modelling was used by Bhattacharyya et al.
n a proteomics study of pancreatic cancer [45] and by Zhu
nd Hastie on microarray data in three cancer diagnosis data
ets [46]. Others have combined PLS with logistic regression
47,48]. In penalized logistic regression, a penalty is set on the
egression coefficients. As a result, some coefficients become
ero, which effectively reduces the number of features [49,50].

.5. Nearest shrunken centroids

In nearest centroid classification, a sample is assigned to the
lass with the nearest class mean. To accommodate classification
f gene expression data, Tibshirani et al. developed the near-
st shrunken centroids (NSC) method [51]. It shrinks the class
entroids towards the overall centroid, thereby selecting genes.
SC, like diagonal discriminant analysis assumes a diagonal
ithin-class covariance matrix. Tibshirani employed NSC for

he discrimination of different cancer types. To predict the tis-
ue of origin of 60 cancer cell lines, Shankavaram et al. applied
SC to gene expression profiles [52]. In a proteomics study of
idney patients with and without proteinuria, Kemperman et al.
elected discriminating proteins using NSC [53].

.6. Artificial neural networks

Artificial neural networks (ANN) refer to a class of nonlinear
odelling methods. Three parts can be discerned in an ANN: the

eurons in the input layer (data), neurons in one or more hidden
ayers, and the output layer neurons (predicted responses). The
eurons in the hidden layer are formed by basis transformations
f the input. The parameters of the basis transformations are
earned from the data, as are the weights assigned to the hidden
eurons to create the output [13]. Bloom applied ANN for the
etection of the tissue of origin of adenocarcinomas, which were
nalyzed by 2D gel electrophoresis [54]. Other applications are
rediction in breast cancer [55] and kidney disease [56].

.7. Classification trees
A classification tree algorithm recursively splits the data in
parent node into two subsets called child nodes. The deci-

ion for the split is based on the value for one protein. The aim
s to maximize homogeneity in the child nodes and the pro-
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ein that gives the largest decrease in heterogeneity is chosen.
he child nodes then become parent nodes and new variables
re selected to split these nodes in turn. This process contin-
es until all variables have been used or all terminal nodes
re homogeneous. The last step is pruning of the tree to avoid
verfitting. Several measures of heterogeneity are employed in
ifferent tree algorithms [13]. Some applications of decision
rees in proteomics are clinical studies of pancreatic cancer
45], clinical behaviour after treatment in leukaemia patients
57], and ectopic pregnancy [58]. In this last study, Gerton et
l. first built two trees to optimize separately for sensitivity and
pecificity, which they then combined to form one classification
odel.

.8. Ensemble classifiers

Ensemble classifiers are formed by combining several single
lassification rules (base classifiers), with the goal to construct a
redictor with superior performance. A new sample is classified
y all individual classifiers and the ensemble prediction can be
ade by majority voting. The ensemble method is successful
hen each individual rule makes correct prediction for more than
alf of the samples and if the rules are diverse (give independent
redictions) [59].

Different types of ensemble methods exist. Using several dif-
erent classification methods to construct the base classifiers is
ne way to create diverse rules [60]. Alternatively, the rules
an all be constructed with the same classification method, for
xample ANN [61]. Diversity of the rules can then be intro-
uced by resampling the subjects with cross-validation [62],
ootstrapping [61,63–65], and boosting [66,67]. A combination
f bagging and boosting is used by Dettling in BagBoosting,
here in each boosting step a bagged classifier is constructed

68]. Alternatively, resampling of the variables also leads to
iverse base classifiers [69–72]. After construction of the base
lassifiers, their diversity can be evaluated by comparing their
redictions [60,69] or the structure of the individual classifiers
63]. The final step is the combination of the base classifiers to
rrive at one prediction for a sample. Several fusion methods
xist [73], of which weighted voting and majority voting are
uch applied [60,62,64].
A well known ensemble classifier is the classification forest.

he classification forest is an extension of the classification tree,
here multiple trees are constructed and used in an ensemble to
redict new samples. Examples of forest classifiers are random
orest (RF) [74], for applications see [75,76], and decision forest
77,78].

. Biomarker candidate selection

With biomarker candidate selection we refer to feature selec-
ion with the aim to discover which proteins are promising leads
or biomarkers. We place this module after the classification

ethods, because the classification rules contain information

bout the contribution of each variable to the classification. This
nformation reveals the proteins of interest, which may prove
o be biomarkers. Two methods that determine the interesting
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ariables directly are the classification tree [13], which classi-
es samples based on their values for a small number of proteins
nd the NSC algorithm, which as a by-product of constructing
classification rule selects variables [51].

Other classification methods carry relevant information about
he variables in the form of weights and regression coefficients
linear SVM, DA). This information is used in many applications
o select relevant sets of proteins. Guyon developed recursive
eature elimination (RFE), a backward feature selection method,
hich eliminates the feature with the smallest weight in a linear
VM rule [17]. Rank products was initially designed for gene
election using gene expression differences between two groups
irectly [79], but it has also been employed for selection of
roteins using a PCDA classification rule [33].

Bijlsma et al. used a threshold on the regression coefficients in
LSDA to select potential metabolite biomarkers [36]. Another
eature extraction method for PLSDA is variable importance in
he projection (VIP). The VIP value of a variable reflects its
mportance in the model with respect to the response vector as
ell as to the projected data [80]. It has been used in the selection
f metabolites in studies of liver function in Hepatitis B [81] and
ntestinal fistulas [82].

Variable selection in ensemble methods is perhaps less
traightforward, due to the amount of information that comes
rom using multiple classification rules. The random forest algo-
ithm estimates the importance of a variable by permuting the
easurements for that variable, leaving the rest of the data intact

nd classifying new samples [74].
It is also possible to use the information from significance

ests (t-test, Wilcoxon–Mann–Whitney test) to select disease
arkers, without running a classification algorithm [18].

. Comparison studies

Many more classification algorithms are available; the list
f classifiers and variable selection methods we discuss is not
xhaustive. The question arises which method is best suited for
lassification of proteomics data. It is hard to compare results
rom different studies because conditions vary. This is due to
he fact that preprocessing, reporting of performance and val-
dation schemes are not the same. There are some studies that
escribe performance of several classification methods applied
o the same data set, with the aim to compare classifiers.

Liu et al. investigated six feature selection methods on
eukaemia gene expression data and on ovarian cancer MS data
83]. After feature selection, four classifiers were applied to the
educed data. For the gene expression set entropy feature selec-
ion, which selects the features based on their discriminatory
ower, came out first. A correlation based feature selection (this
ethod selects a subset of features that correlate with response

ut not with one another) led to the best performance in the
varian cancer data.

A special issue of Proteomics in 2003 covered the data analy-

is efforts of several research groups on the same lung cancer data
et [84]. Many strategies are applied in this issue to obtain a clas-
ifier. Due to the use of different validation schemes and different
reprocessing it is very difficult to compare the performance.
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In a comparison study of simple DA classifiers with
ggregated classification trees (as representative for more
ophisticated machine learning approaches) on three gene
xpression data sets, Dudoit et al. found that the DA methods
erformed very well [29].

Wagner et al. compared several linear and nonlinear DA
ethods and a linear SVM for classification of prostate cancer
S data [85]. Although the performances of the methods were

omparable, the linear DA and linear SVM performed slightly
etter than nonlinear DA methods.

Wu et al. combined two feature selection methods and sev-
ral classification algorithms to classify ovarian cancer MS data
19]. They concluded that RF outperformed the other methods
among which SVM, DA, bagged and boosted classification
rees), but their conclusion was mainly based on the results
fter feature selection with RF. Feature selection based on the
-statistic resulted in superior performance of SVM and linear
A, closely followed by RF.

For classification of MS data of Gaucher disease, Hendriks et
l. applied six classification methods [67]. The most successful
ere SVM, penalized logistic regression and PCDA.
The previous paragraphs show there is no consensus in what

he best classifier is. This is due to the fact that different data
ets have different characteristics and therefore no classifier will
ave optimal performance for all data sets. The performance not
nly depends on the data but also on the feature selection step
nd on the individual experience and taste of the data analyst.
xperience with a method is likely to give better results. We
ave found no papers with general guidance in which situation
o use a certain classifier.

. Statistical validation

The next step towards clinical utility is validation. First, the
esults of a preliminary clinical proteomics study should be
ubjected to thorough statistical assessment. Next, a new set
f samples should be measured independently in time and/or
lace from the first data set to test the classifier. If the prelim-
nary results warrant the investment, the following step would
e identification of the relevant proteins to determine biological
alidity.

In this section we describe two tools, permutation tests and
ross-validation, to assess the statistical validity of the classifier,
ased on the first preliminary data set only. An overview of
alidation strategies in proteomics literature is given. We start
y discussing different performance measures that are used in
linical proteomics.

.1. Performance measures

The performance of a classifier in clinical applications is usu-
lly given in two measures. The sensitivity is the fraction of
ases that are classified as cases. The specificity is the fraction

f controls that is correctly identified. The sensitivity and speci-
city can take values between zero and one, where zero means
ll samples in that class are misclassified and one means that
hey are all correctly identified. They are both reported, because

t
e

s

Fig. 4. ROC curve.

hey each show a different characteristic of the classifier and
an be very different [86]. The sensitivity and specificity can be
ltered by shifting the threshold for assignment to the case or
ontrol class. This may lead to a classifier with more desirable
haracteristics, such as a higher sensitivity, usually at the cost of
pecificity. The sensitivity and specificity can be plotted together
n a receiver operating characteristic (ROC) curve. An example
f an ROC curve is given in Fig. 4. The sensitivity is plotted on
he y-axis and the x-axis represents the false positive fraction (1
specificity). The lower left corner represents the case where
ll controls are correctly classified (specificity is 1), but all the
ases are classified as controls (sensitivity is zero). The opposite
ase occurs in the upper right corner, where the sensitivity is 1
nd the specificity is zero. Both corners are always part of the
OC curve. In between, the sensitivity and false positive frac-

ions for different values of the threshold are plotted. Ideally, the
esulting curve would go from the lower left corner to the upper
eft corner and then to the upper right corner. This represents

classifier that is able to perfectly distinguish between cases
nd control for some value for the threshold. The information in
n ROC plot is summarized by the area under the curve (AUC).
he AUC of a perfect classifier is one, whereas an uninformative
lassifier has an AUC of 0.5 [21,86].

.2. Cross-validation for performance estimation

A classifier is trained on a limited data set at some point
n time, with the objective to correctly classify samples that
ill be measured in the future. At the time of construction, it

s not possible to foresee how well a classifier will perform on
reshly acquired samples, because the samples are not available.
herefore, the performance is estimated on data that is available.
evertheless, the performance estimate should be based on an
nseen set of samples, which are not in any way used in creat-
ng the classifier. If the performance is estimated using samples

hat have somehow been used in the modelling procedure, the
stimate will be overly optimistic [13].

A second requirement of the performance estimate is that it
hould take into account the variability of the classifier. The data
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et from which the parameters of the classifier are estimated is a
ample from the entire population and therefore this classifier is
ne possible realisation. Other samples from the same popula-
ion would result in different parameter estimates. The variability
f the classifier should be reflected in the performance estimator.

Both requirements are met in cross-validation. Cross-
alidation makes efficient use of the available data, which is
specially helpful in small datasets. The general idea is to split
he data into several approximately equal-size parts. Each part
s masked in turn (test set), while the remaining parts combined
re used to train the classifier (training set). The classifier is then
pplied to the masked set for prediction. This is repeated until
ll parts have been masked once, and then the error made in the
linded test sets is combined to give an independent estimate
f the performance of the classifier. Because the training sets
re different in each repetition, the cross-validated performance
stimate incorporates the variability of the classifier.

There are different variants of cross-validation. When the test
et is made up of one sample it is called leave-one-out (LOO)
ross-validation. In k-fold cross-validation, the data is divided
n k parts. If k equals the number of samples it is leave-one-out
ross-validation. A variant of k-fold cross-validation is leave-
ultiple-out cross-validation, where repetitions are allowed in

he test sets [87]. Often, the ratio of the class sizes is preserved
n the training and test sets, making them accurate representa-
ions of the original data. This is called stratified cross-validation
33,88,89].

.3. Cross-validation for metaparameters/feature selection

Many of the classification methods described in the previous
ection require the optimization of model tuning parameters. For
xample, in PCDA and PLSDA, the number of retained latent
ariables should not be too low, because valuable information
ould be discarded. On the other hand, incorporating too many

atent variables means uninformative noise is incorporated in
he model. Care has to be taken to avoid overfitting of the model
o the available data, as the data are typically highly undersam-
led. The choice of these parameters should be such that the
eneralization error of the resulting model (the error made in
ew samples) is low. This is also true for the selection of (a
ubset of) proteins for prediction. The selection should not only
ive good predictions for the available data, but also on newly
cquired data. The tuning parameters and protein selection are
alled metaparameters.

Cross-validation is a much employed method to tune meta-
arameters in proteomics, as well as in other ‘omics’ studies,
hemometrics, and Quantitative Structure–Activity Relation-
hip research. In this section we will borrow from research on
ross-validation in these fields and transfer relevant findings
o clinical proteomics. For metaparameter tuning, the cross-
alidation procedure is repeated for different choices of the
etaparameter. The performances of classifiers with different
alues for the metaparameters are compared to choose the
arameter with the lowest cross validation error. Because the
est sets are not used in creating the classifiers, overfitting of the

odel is prevented.
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In the previous section we mentioned that cross-validation
eflects the variability of the classifier that is due to the data
eing a sample from a population. This is also of importance for
he selection of a metaparameter, since the goal is to construct

representative classifier. In LOO cross-validation, the train-
ng sets are very similar to the full data set and to each other.
his means that the classifiers constructed on the training sets
ill not vary much and there is still a risk of overfitting. k-Fold

ross-validation introduces more variability, because the train-
ng sets are smaller and less similar [13]. This forces the selection
rocedure to recognize general patterns, rather than individual
ata points [87]. A good value for k depends on the data: with
maller values for k, the test sets are larger and the training sets in
ndersampled datasets may become too small for building mean-
ngful models. Moreover, the bias inherent to cross-validation
ncreases with smaller values for k. This bias results from the
raining sets being smaller than the full data [13]. Generally, 5
r 10-fold cross-validation is used [90]. There are many ways
o split the data into different parts in k-fold cross-validation.
he estimate of the performance may depend on the choice of
plit [88]. Therefore, it is recommended to repeat the cross-
alidation several times with different splits of the data. Kohavi
nd John let the number of repeats depend on the standard devi-
tion of the performance estimate [91]. They repeat until the
tandard deviation becomes sufficiently small. This way, large
atasets are cross validated fewer times than small ones, in
hich the variance will be higher. It saves computing time and

t gives a criterion for the number of repeats of cross-validation
ecessary.

Cross-validation can be performed with restrictions. Bau-
ann restricts the number of variables (proteins) or latent

ariables to be selected [87]. However, this requires a priori
nowledge of the data. Kohavi and John implement a complexity
enalty in their evaluation to favour smaller subsets of variables
91].

.4. Double cross-validation for metaparameter selection
nd performance estimation

When selecting a model with cross-validation, the corre-
ponding cross-validation error is an inappropriate estimate of
he prediction error of the model. In that case the cross-validation
rror is not based on an independent test set, because with the
hoice for a certain model, all of the data – the test samples
s well as the training samples – is used. To solve this, Stone
ntroduced the cross validatory paradigm: the cross validated
hoice of parameters requires cross validatory assessment to
void overly optimistic performance estimates [92]. This means
nested cross-validation scheme is needed to estimate the pre-
iction error, where the parameter optimization is executed in an
nternal loop and the prediction error is estimated in an external
oop on a completely independent set of samples. Pseudocode
or this cross-validation scheme is given in Fig. 5. It is often

alled cross-model validation or double cross-validation; in this
eview we refer to this scheme as double cross-validation. (For
odelling procedures in which parameters are tuned in another
ay than with cross-validation, for example by bootstrapping, all
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For a metabolomics obesity study, Bijlsma et al. developed a
Fig. 5. Pseudocode for double cross-validation.

hese training steps have to be taken into account in the validation
f the performance.)

Several researchers have investigated the extent of the bias
f the cross-validation error when not all model training steps
re evaluated within the cross-validation. Taking two microarray
atasets as an example (using SVM with RFE), Ambroise and
cLachlan showed that, while single cross-validation suggests

hat the error rate was negligible, the test error was far from that
93]. Double cross-validation error is a much better estimate of
he performance. In addition, they calculated the single and dou-
le cross-validation error rates for 20 permutations of the data.
lthough no information is present in the permuted data sets, the

ross-validation error that is obtained with the selection of genes
as almost zero. In contrast, double cross-validation error esti-
ates were much more realistic, between 40% and 45%. Similar

esults were reported by Simon et al. [94], Varma and Simon [95]
nd Smit et al. [33].

The bias that is introduced in the performance estimate by
gnoring the metaparameter selection in the validation process
s called the parameter selection bias. Double cross-validation
emoves the parameter selection bias, but it does have the slight
ias inherent to cross-validation that is the result of the lower
umber of samples in the training set than in the full data set
95].

It may seem a bit unclear what model is validated with double
ross-validation, because the internal loop returns different tun-
ng parameters for different training sets [96]. This is very much
he same as what we described for cross-validation in the pre-
ious section. The variability of the classifier – in this case, the
ariability of the metaparameters as well as the estimated param-
ters – is taken into account in estimating the performance with
ouble cross-validation [33]. Consequently, in double cross-
alidation the entire model optimization procedure is validated
95]. The ultimate classifier can be constructed in several ways.
tone chooses the tuning parameter with a cross-validation and

ses this parameter to build a model on the full dataset [92,96].
ther possibilities are retaining all k classification rules from the
ouble cross-validation and use them together as an ensemble
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lassifier for new samples or using the most frequently selected
arameter in the internal loop on the full data set [97].

.5. Permutation test

In a permutation test the class labels are repeatedly removed
nd randomly reassigned to samples to create an uninformative
ata set of the same size as the data under study. One application
f permutation tests is determining the relevance of a model.
uilding and testing a classifier on many permutations of the
ata gives a distribution of the performance found by chance,
o which the performance of the classifier on the original data
an be compared. The same classifier building protocol that is
pplied to the data is applied to the permutations, including any
ltering or other selection of variables and parameter tuning
87].

Permutation testing was already mentioned in the previous
ection where it appeared as a tool to investigate the bias of dif-
erent cross-validation methods [93]. Others have used it for the
ame purpose [97]. The rationale behind the use of the permu-
ation test in this manner is that with uninformative data that
s divided into two groups, a classifier would on average assign
0% to the wrong class. A validation method that returns an error
ate that is on average much deviating from the expected 50%
rror rate is biased. Permutation tests thus answer two questions:
hether the information in the data is truly relevant and whether

he performance estimation is carried out properly.
In the literature, the number of executed permutations varies

ubstantially. Ambroise et al. use 20 permutations to investigate
he bias of incomplete cross-validation [93], while Bijlsma et al.
nd Smit et al. use as many as 10,000 permutations to determine
he significance of the performance of a classifier [33,36,67].

So how many permutations are needed? For very small data
ets it may be feasible to perform an exhaustive permutation test
n which all possible permutations are considered. The number
f possible permutations quickly rises, even for moderate class
izes. As an alternative, a test can be performed with only a sub-
et of all permutations. The number of permutations determines
ccuracy and the lower bound of the p-value; with 100 permu-
ations the lowest possible p-value is 0.01. Since the variance
f the performance in permutations can be very large, a large
umber of permutations are needed to obtain a reliable result.

.6. Strategies and applications

In this section we provide some examples of validation strate-
ies applied in transcriptomics, metabolomics and proteomics
iterature.

A microarray data analysis workflow is suggested by Wessels
t al. [88]. Their validation protocol consists of 100 repeats of a
tratified double cross-validation, where the outer loop is a three
old cross-validation and the inner loop is 10 fold. They report
he average of the sensitivity and the specificity.
trategy for data preprocessing, processing and validation [36].
he PLSDA classifier performance is evaluated with single
ross-validation and 10,000 permutations. Potential biomarkers
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re selected that have regression coefficients above a certain
hreshold. The information carried in the biomarker selection
s tested by building models with only the selected variables.
dditionally, non-informative models are build on the data
ithout the selected variables to test if all relevant information

s captured in the selected variables.
In proteomics research there are also several examples of sta-

istical validation strategies. Lee validated PLSDA results on MS
ata with double cross-validation and by comparing the perfor-
ance with 20 permutations of the original data [98]. Similar

tatistical strategies in clinical proteomics studies are used by
ong [78] and Smit et al. [33], but they consider thousands of
ermutations.

. Proteomics data analysis: a framework

Data analysis methods extract information from the data to
redict the class. As shown, there are many methods for feature
election, classification, biomarker candidate selection and sta-
istical validation. It is possible to combine methods in different
ays, leading to many data analysis approaches. We propose a
odular data analysis framework (Fig. 6), in which most data

nalysis strategies fit. Some of the modules are optional, but
alidation is not! For each module the researcher can use his or
er method of choice. In the remainder of this section we will
iscus the modules and their interactions.

Module 1 is the feature selection. This module is optional,
ut for high dimensional data the choice of classification method
ometimes demands feature selection, for example when dis-
riminant analysis or logistic regression is used. Module 2 is the
lassification method, this module is only necessary if one of
he aims is to obtain a classification rule. Module 3 represents
he biomarker selection, it is to be used if biomarker discovery
s the purpose of the study and the biomarker selection is not
ntrinsic to the classification method.

The next three modules are statistical validation methods that
re all discussed in the section Statistical validation. From a sta-
istical point of view it is recommendable to use these modules

f possible since they give generalizable models (module 4), per-
ormance estimates (module 5) and insight in the relevance of the
odel and the data (module 6). Invoking these validation tools

nhances the trustworthiness of the model and the biomarkers.

Fig. 6. Modular view of proteomics data analysis.
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. Black spots and open issues

.1. External test set

If there is only one data set available a cross-validation
pproach makes efficient use of the data [97]. However, an exter-
al test set is always of added value [94]. An external data set
btained in a different way can show whether the model is not
oo specific for the data set that is used to construct the classifica-
ion rule. For example the measurement could be performed on
nother instrument, by a different person, and the samples could
ave been obtained from a different population of patients. In
he omics literature several examples of the use of external test
et can be found [76,99].

.2. Power calculations

An issue that we have not yet addressed in this review is
ower calculations. A power calculation determines the sam-
le size necessary to observe a known effect. Such calculations
re standard in clinical trials [100], but are not yet developed
or clinical proteomics. There are two problems involved in
ower calculations for clinical proteomics: (i) unknown effect
ize, (ii) highly multivariate data. For power calculations the
xpected effect size (or the minimal wanted effect size) has to
e known a priori. This is problematic in clinical proteomics.
oreover, power calculations are well developed for univariate

nalysis, but the results for multivariate analysis are very limited
101].

Obviously, the larger the sample sets, the more accurate the
esult. Unfortunately, the number of measurements is usually
imited due to the cost of measurements or the limited availability
f suitable samples. Validation strategies help overcome some
roblems. However, Rubingh et al. show that statistical tests
ecome unreliable for data sets with small sample size [102].

.3. Increasing complexity of data sets

The technology of mass spectrometry is improving, see for
xample the developments in hyphenated techniques, such as the
ombination of liquid chromatography and mass spectrometry
LC/MS). This implicates that the data sets, which are already
omplex, will be even more complex in the future. We see a
endency in the literature to analyze combinations of different
ypes of omics data [3].

. Conclusions

Proteomics research, despite the large effort in recent years,
nows many issues that are still subject to debate. This review
iscussed some issues related to the analysis of proteomics data.
ue to the complex nature and the high dimensionality of the
ata it generates it is easy to find differences between groups.

ut these differences are possibly just chance results. The goal

s to develop classifiers and/or biomarkers that perform well on
ew data. Furthermore, a proper estimate of the performance is
esirable for forming realistic expectations for the prediction of



matog

f
b

p
s
t
s
u
b
t

t
t
b
i
w
e
m
t

A

R

S. Smit et al. / J. Chro

uture samples. Additionally, the relevance of the model should
e investigated.

In this review we have shown that there are some good exam-
les of performing statistical validation. We urge to set some
tandards in reporting results from models derived from pro-
eomics data. Such a standard could include that sensitivity and
pecificity are only to be reported on test sets that have not been
sed during model building. Furthermore, also a p-value, possi-
ly obtained from a permutation test, should be reported in order
o assess the probability of a chance result.

A statistically valid biomarker should always be subjected
o biological validation. This answers the question whether
he biomarkers are specific for the disease. A statistical valid
iomarker can be biologically irrelevant. To give an example:
f the experiment is on a healthy control group and a group
ith cancer, the biomarker might be indicative for a secondary

ffect like inflammation that is not specific for cancer. Even the
ost thorough statistical procedure cannot safe-guard against

his type of findings.

cknowledgement

We thank Daniel Vis for careful reading of this manuscript.

eferences

[1] M.S. Pepe, R. Etzioni, Z.D. Feng, J.D. Potter, M.L. Thompson, M. Thorn-
quist, M. Winget, Y. Yasui, J. Natl. Cancer Inst. 93 (2001) 1054.

[2] S. Hanash, Nature 422 (2003) 226.
[3] R. Aebersold, M. Mann, Nature 422 (2003) 198.
[4] B. Domon, R. Aebersold, Science 312 (2006) 212.
[5] G.S. Omenn, Proteomics 6 (2006) 5662.
[6] J. Villanueva, J. Philip, C.A. Chaparro, Y.B. Li, R. Toledo-Crow, L.

DeNoyer, M. Fleisher, R.J. Robbins, P. Tempst, J. Proteome Res. 4 (2005)
1060.

[7] R.A.R. Bowen, Y. Chan, J. Cohen, N.N. Rehak, G.L. Hortin, G. Csako,
A.T. Remaley, Clin. Chem. 51 (2005) 424.

[8] A.J. Rai, F. Vitzthum, Expert Rev. Proteomics 3 (2006) 409.
[9] M. Dijkstra, R.J. Vonk, R.C. Jansen, J. Chromatogr. B 847 (2007) 12.

[10] M. West-Nielsen, E.V. Hogdall, E. Marchiori, C.K. Hogdall, C. Schou,
N.H.H. Heegaard, Anal. Chem. 77 (2005) 5114.

[11] A.E. Pelzer, I. Feuerstein, C. Fuchsberger, S. Ongarello, J. Bektic, C.
Schwentner, H. Klocker, G. Bartsch, G.K. Bonn, Bju Int. 99 (2007) 658.

[12] M. Hilario, A. Kalousis, C. Pellegrini, M. Muller, Mass Spectrom. Rev.
25 (2006) 409.

[13] T. Hastie, J. Friedman, R. Tibshiranie, The Elements of Statistical Learn-
ing. Data mining, Inference and Prediction, Springer, New York, 2001.

[14] L. Kanal, B. Chandrasekaran, Pattern Recogn. 3 (1971) 225.
[15] A. Choudhary, M. Brun, J.P. Hua, J. Lowey, E. Suh, E.R. Dougherty,

Bioinformatics 22 (2006) 837.
[16] E.R. Dougherty, J.P. Hua, M.L. Bittner, Curr. Genomics 8 (2007) 1.
[17] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Mach. Learn. 46 (2002) 389.
[18] M.K. Titulaer, I. Siccama, L.J. Dekker, A.L.C.T. van Rijswilk, R.M.A.

Heeren, P.A.S. Smitt, T.M. Luider, BMC Bioinform. 7 (2006).
[19] B.L. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, D.

Ward, K. Williams, H.Y. Zhao, Bioinformatics 19 (2003) 1636.
[20] I. Levner, BMC Bioinform. 6 (2005).
[21] D.I. Broadhurst, D.B. Kell, Metabolomics 2 (2006) 171.

[22] Y. Benjamini, Y. Hochberg, J.R. Statist, Soc. B 57 (1995) 289.
[23] J.D. Storey, J.R. Statist. Soc. B 64 (2002) 479.
[24] V.G. Tusher, R. Tibshirani, G. Chu, Proc. Natl. Acad. Sci. U.S.A. 98

(2001) 5116.
[25] I.T. Joliffe, Principal Component Analysis, Springer, New York, 2002.
r. B  866 (2008) 77–88 87

[26] R. Wehrens, L.M.C. Buydens, TrAC, Trends Anal. Chem. 17 (1998)
193.

[27] R.A. Fisher, Ann. Eugen. 7 (1936) 179.
[28] J.H. Friedman, J. Am. Stat. Assoc. 84 (1989) 165.
[29] S. Dudoit, J. Fridlyand, T.P. Speed, J. Am. Stat. Assoc. 97 (2002) 77.
[30] R. Hoogerbrugge, S.J. Willig, P.G. Kistemaker, Anal. Chem. 55 (1983)

1710.
[31] J. Ye, T. Li, T. Xiong, R. Janardan, IEEE/ACM Trans. Comput. Biol.

Bioinform. 1 (2004) 181.
[32] R.H. Lilien, H. Farid, B.R. Donald, J. Comput. Biol. 10 (2003) 925.
[33] S. Smit, M.J. van Breemen, H.C.J. Hoefsloot, A.K. Smilde, J.M.F.G.

Aerts, C.G. de Koster, Anal. Chim. Acta 592 (2007) 210.
[34] S. Wold, A. Ruhe, H. Wold, W.J. Dunn III, Siam J. Sci. Stat. Comput. 5

(1984) 735.
[35] M. Barker, W. Rayens, J. Chemom. 17 (2003) 166.
[36] S. Bijlsma, L. Bobeldijk, E.R. Verheij, R. Ramaker, S. Kochhar, I.A.

Macdonald, B. van Ommen, A.K. Smilde, Anal. Chem. 78 (2006)
567.

[37] J. Gottfries, M. Sjogren, B. Holmberg, L. Rosengren, P. Davidsson, K.
Blennow, Chemom. Intell. Lab. Syst. 73 (2004) 47.

[38] J. Trygg, E. Holmes, T. Lundstedt, J. Proteome Res. 6 (2007) 469.
[39] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,

New York, 2000.
[40] D. Agranoff, D. Fernandez-Reyes, M.C. Papadopoulos, S.A. Rojas, M.

Herbster, A. Loosemore, E. Tarelli, J. Sheldon, A. Schwenk, R. Pollak,
C.F.J. Rayner, S. Krishna, Lancet 368 (2006) 1012.

[41] K. Jong, E. Marchiori, A. van der Vaart, Applications of Evolutionary
Computing 3005 (2004) 41.

[42] F.M. Smith, W.M. Gallagher, E. Fox, R.B. Stephens, E. Rexhepaj, E.F.
Petricoin, L. Liotta, M.J. Kennedy, J.V. Reynolds, Ann. Surg. 245 (2007)
259.

[43] R. Willingale, D.J.L. Jones, J.H. Lamb, P. Quinn, P.B. Farmer, L.L. Ng,
Proteomics 6 (2006) 5903.

[44] X.G. Zhang, X. Lu, Q. Shi, X.Q. Xu, H.C.E. Leung, L.N. Harris, J.D.
Iglehart, A. Miron, J.S. Liu, W.H. Wong, BMC Bioinform. 7 (2006).

[45] S. Bhattacharyya, E.R. Siegel, G.M. Petersen, S.T. Chari, L.J. Suva, R.S.
Haun, Neoplasia 6 (2004) 674.

[46] J. Zhu, T. Hastie, Biostatistics 5 (2004) 427.
[47] A. Goncalves, B. Esterni, F. Bertucci, R. Sauvan, C. Chabannon, M.

Cubizolles, V.J. Bardou, G. Houvenaegel, J. Jacquemier, S. Granjeaud,
X.Y. Meng, E.T. Fung, D. Birnbaum, D. Maraninchi, P. Viens, J.P. Borg,
Oncogene 25 (2006) 981.

[48] L. Shen, E.C. Tan, IEEE/ACM Trans. Comput. Biol. Bioinform. 2 (2005)
166.

[49] P.H.C. Eilers, J. Boer, G.J.B. van Ommen, J.C. van Houwelingen, Prog.
Biomed. Optics Imag. 2 (2001) 187.

[50] M. Dettling, P. Buhlmann, J. Multivar. Anal. 90 (2004) 106.
[51] R. Tibshirani, T. Hastie, B. Narasimhan, G. Chu, Proc. Natl. Acad. Sci.

U.S.A. 99 (2002) 6567.
[52] U.T. Shankavaram, W.C. Reinhold, S. Nishizuka, S. Major, D. Morita,

K.K. Chary, M.A. Reimers, U. Scherf, A. Kahn, D. Dolginow, J. Coss-
man, E.P. Kaldjian, D.A. Scudiero, E. Petricoin, L. Liotta, J.K. Lee, J.N.
Weinstein, Mol. Cancer Ther. 6 (2007) 820.

[53] R.F.J. Kemperman, P.L. Horvatovich, B. Hoekman, T.H. Reijmers, F.A.J.
Muskiet, R. Bischoff, J. Proteome Res. 6 (2007) 194.

[54] G.C. Bloom, S. Eschrich, J.X. Zhou, D. Coppola, T.J. Yeatman, Int. J.
Cancer 120 (2006) 769.

[55] Q.H.C. Ru, L.W.A. Zhu, J. Silberman, C.D. Shriver, Mol. Cell. Proteomics
5 (2006) 1095.

[56] J.C. Oates, S. Varghese, A.M. Bland, T.P. Taylor, S.E. Self, R. Stanislaus,
J.S. Almeida, J.M. Arthur, Kidney Int. 68 (2005) 2588.

[57] M. Albitar, S.J. Potts, F.J. Giles, S. O’Brien, M. Keating, D. Thomas, C.
Clarke, I. Jilani, C. Aguilar, E. Estey, H. Kantarjian, Cancer 106 (2006)

1587.

[58] G.L. Gerton, X.J. Fan, J. Chittams, M. Sammel, A. Hummel, J.F. Strauss,
K. Barnhart, Ann. N.Y. Acad. Sci. 1022 (2004) 306.

[59] L.K. Hansen, P. Salamon, IEEE Trans. Pattern Anal. Mach. Intell. 12
(1990) 993.



8 atogr
8 S. Smit et al. / J. Chrom

[60] G. Bhanot, G. Alexe, B. Venkataraghavan, A.J. Levine, Proteomics 6
(2006) 592.

[61] B. Liu, Q.H. Cui, T.Z. Jiang, S.D. Ma, BMC Bioinform. 5 (2004) 136.
[62] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann,

F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, P.S. Meltzer, Nat.
Med. 7 (2001) 673.

[63] J.H. Hong, S.B. Cho, Artif. Intell. Med. 36 (2006) 43.
[64] M.P.A. Ebert, J. Meuer, J.C. Wiemer, H.U. Schulz, M.A. Reymond, U.

Traugott, P. Malfertheiner, C. Rocken, J. Proteome Res. 3 (2004) 1261.
[65] G. Valentini, M. Muselli, F. Ruffino, Neurocomputing 56 (2004) 461.
[66] E. Tamoto, M. Tada, K. Murakawa, M. Takada, G. Shindo, K. Ter-

amoto, A. Matsunaga, K. Komuro, M. Kanai, A. Kawakami, Y. Fujiwara,
N. Kobayashi, K. Shirata, N. Nishimura, S.I. Okushiba, S. Kondo, J.
Hamada, T. Yoshiki, T. Moriuchi, H. Katoh, Clin. Cancer Res. 10 (2004)
3629.

[67] M.M.W.B. Hendriks, S. Smit, L.M.W. Akkermans, T.H. Reijmers, P.H.C.
Eilers, H.C.J. Hoefsloot, C.M. Rubingh, C.G. de Koster, J.M. Aerts, A.K.
Smilde, Proteomics 7 (2007) 3672.

[68] M. Dettling, Bioinformatics 20 (2004) 3583.
[69] Y.H. Peng, Int. J. Syst. Sci. 37 (2006) 931.
[70] A. Bertoni, R. Folgieri, G. Valentini, Neurocomputing 63 (2005) 535.
[71] K.J. Kim, S.B. Cho, Neurocomputing 70 (2006) 187.
[72] H.H. Won, S.B. Cho, Lecture Notes In Computer Science 2714 (2003)

1143.
[73] L.I. Kuncheva, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 281.
[74] L. Breiman, Mach. Learn. 45 (2001) 5.
[75] E.C. Gunther, D.J. Stone, R.W. Gerwien, P. Bento, M.P. Heyes, Proc.

Natl. Acad. Sci. U.S.A. 100 (2003) 9608.
[76] K. Hoffmann, M.J. Firth, A.H. Beesley, N.H. de Klerk, U.R. Kees, BMC

Cancer 6 (2006) 229.
[77] W.D. Tong, H.X. Hong, H. Fang, Q. Xie, R. Perkins, J. Chem. Inf. Comput.
Sci. 43 (2003) 525.
[78] W.D. Tong, W. Xie, H.X. Hong, H. Fang, L.M. Shi, R. Perkins, E.F.

Petricoin, Environ. Health Perspect. 112 (2004) 1622.
[79] R. Breitling, P. Armengaud, A. Amtmann, P. Herzyk, FEBS Lett. 573

(2004) 83.
. B  866 (2008) 77–88

[80] A.B. Umetrics, User’s Guide to SIMCA-P, SIMCA-P + (2005),
www.umetrics.com/pdfs/userguides/SIMCA-P 11 UG.pdf.

[81] J. Yang, X.J. Zhao, X.L. Liu, C. Wang, P. Gao, J.S. Wang, L.J. Li, J.R.
Gu, S.L. Yang, G.W. Xu, J. Proteome Res. 5 (2006) 554.

[82] P.Y. Yin, X.J. Zhao, Q.R. Li, J.S. Wang, J.S. Li, G.W. Xu, J. Proteome
Res. 5 (2006) 2135.

[83] H. Liu, J. Li, L. Wong, Genome Inform. 13 (2002) 51.
[84] Proteomics 3 (2003) 1667.
[85] M. Wagner, D.N. Naik, A. Pothen, S. Kasukurti, R.R. Devineni, B.L.

Adam, O.J. Semmes, G.L. Wright, BMC Bioinform. 5 (2004) 26.
[86] M.S. Pepe, Stat. Med. 24 (2005) 3687.
[87] K. Baumann, TrAC Trends Anal. Chem. 22 (2003) 395.
[88] L.F.A. Wessels, M.J.T. Reinders, A.A.M. Hart, C.J. Veenman, H. Dai,

Y.D. He, L.J. van’t Veer, Bioinformatics 21 (2005) 3755.
[89] R. Kohavi, International Joint Conference on Artificial Intelligence, 1995,

p. 1137.
[90] P. Zhang, Ann. Stat. 21 (1993) 299.
[91] R. Kohavi, G.H. John, Artif. Intell. 97 (1997) 273.
[92] M. Stone, J. R. Statist. Soc. B 36 (1974) 111.
[93] C. Ambroise, G.J. McLachlan, Proc. Natl. Acad. Sci. U.S.A. 99 (2002)

6562.
[94] R. Simon, M.D. Radmacher, K. Dobbin, L.M. McShane, J. Natl. Cancer

Inst. 95 (2003) 14.
[95] S. Varma, R. Simon, BMC Bioinform. 7 (2006).
[96] R.G. Brereton, TrAC Trends Anal. Chem. 25 (2006) 1103.
[97] B.J.A. Mertens, M.E. De Noo, R.A.E.M. Tollenaar, A.M. Deelder, J.

Comput. Biol. 13 (2006) 1591.
[98] K.R. Lee, X.W. Lin, D.C. Park, S. Eslava, Proteomics 3 (2003) 1680.
[99] N.P. Munro, D.A. Cairns, P. Clarke, M. Rogers, A.J. Stanley, J.H. Barrett,

P. Harnden, D. Thompson, I. Eardley, R.E. Banks, M.A. Knowles, Int. J.
Cancer 119 (2006) 2642.
[100] W.J. Dixon, F.J. Massey, Introduction to Statistical Analysis, McGraw-
Hill, New York, 1983.

[101] J.A. Ferreira, A. Zwinderman, Stat. Appl. Genet. Mol. Biol. 5 (2006).
[102] C.M. Rubingh, S. Bijlsma, E.P.P.A. Derks, I. Bobeldijk, E.R. Verheij, S.

Kochhar, A.K. Smilde, Metabolomics 2 (2006) 53.

http://www.umetrics.com/pdfs/userguides/SIMCA-P_11_UG.pdf

	Statistical data processing in clinical proteomics
	Introduction
	Feature selection
	Independent feature selection
	Wrappers

	Classification methods
	Discriminant analysis
	Partial least squares
	Support vector machines
	Logistic regression
	Nearest shrunken centroids
	Artificial neural networks
	Classification trees
	Ensemble classifiers

	Biomarker candidate selection
	Comparison studies
	Statistical validation
	Performance measures
	Cross-validation for performance estimation
	Cross-validation for metaparameters/feature selection
	Double cross-validation for metaparameter selection and performance estimation
	Permutation test
	Strategies and applications

	Proteomics data analysis: a framework
	Black spots and open issues
	External test set
	Power calculations
	Increasing complexity of data sets

	Conclusions
	Acknowledgement
	References


